Energy simulation in building design /J A Clarke

By: J A ClarkeContributor(s): J A ClarkeMaterial type: TextTextPublisher number: International Book Distributors | ;Flat No.17,Prakash Apartments,5 Ansari Road,New Delhi-110002Publication details: Oxford : Butterworth-Heinemann , 2001Edition: 2nd edDescription: x, 362 pages ; 25 cmISBN: 9780750650823Subject(s): Buildings--Energy conservation--Simulation methodsGenre/Form: ;Buildings--Energy conservation--Mathematical modelsDDC classification: 696.011 CLA
Contents:
1.1 A brief history of simulation 3 -- 1.2 Simulation overview 5 -- 1.3 Integrative modelling 7 -- 1.4 Energy flowpaths and causal effects 7 -- 1.5 The need for accuracy and flexibility 18 -- 1.6 Energy modelling techniques 19 -- 2 Integrative modelling methods 22 -- 2.1 Response function methods 22 -- 2.2 Time-domain response functions 25 -- 2.2.1 Multi-layered constructions 28 -- 2.2.2 Zone energy balance 32 -- 2.2.3 Response function application 39 -- 2.3 Frequency domain response functions 40 -- 2.3.1 Multi-layered constructions 41 -- 2.3.2 Zone energy balance 46 -- 2.3.3 Response function application 46 -- 2.4 Numerical methods 51 -- 2.4.1 Taylor series expansion 52 -- 2.4.2 Control volume heat balance 56 -- 2.4.3 Numerical solution techniques 57 -- 2.5 Which method? 60 -- 3 Building simulation 64 -- 3.1 System discretisation 65 -- 3.2 Finite volume energy equation formulation 69 -- 3.2.1 Capacity/insulation systems 71 -- 3.2.2 Exposed surface layers 82 -- 3.2.3 Fluid volumes 86 -- 3.3 Equation structuring 91 -- 4 Processing the building energy equations 99 -- 4.1 Establishing the energy matrix equation 100 -- 4.1.1 Single zone formulation 100 -- 4.1.2 Zone contents and plant interaction 108 -- 4.1.3 Multi-zone systems 110 -- 4.1.4 Treatment of time-dependent properties 112 -- 4.1.5 Adiabatic boundaries 113 -- 4.2 Matrix partitioning for fast simultaneous solution 113 -- 4.2.1 Single zone solution 115 -- 4.2.2 Multi-zone solution 123 -- 4.2.3 Solution on the basis of complex criteria 123 -- 4.2.4 Treatment of non-linear systems 124 -- 4.3 Mixed frequency inversion 125 -- 5 Fluid flow 126 -- 5.1 The nodal network method 127 -- 5.1.1 Boundary conditions 128 -- 5.1.2 Node definition 130 -- 5.1.3 Buoyancy effects 130 -- 5.1.4 Component flow models 131 -- 5.1.5 Iterative solution procedure 135 -- 5.2 Computational fluid dynamics 137 -- 5.2.1 Domain discretisation 138 -- 5.2.2 Conserving energy, mass, momentum and species concentration 140 -- 5.2.3 Initial and boundary conditions 143 -- 5.2.4 Iterative solution procedure 144 -- 5.2.5 Results interpretation 144 -- 5.3 Moisture flow within porous media 146 -- 5.4 Linking the building and flow domains 148 -- 6 HVAC, renewable energy conversion and control systems 157 -- 6.1 Approaches to systems simulation 158 -- 6.2 HVAC systems 159 -- 6.2.1 Air conditioning 159 -- 6.2.1.1 Component process models: algorithmic 167 -- 6.2.1.2 Component process models: numerical 168 -- 6.2.1.3 Modelling by 'primitive parts' 169 -- 6.2.2 Active solar 173 -- 6.2.3 Wet central heating 178 -- 6.3 New and renewable energy conversion systems 185 -- 6.3.1 Electrical power flow 187 -- 6.3.2 Electrical component models 189 -- 6.4 Control systems 193 -- 6.5 Linking the building, flow and systems models 196 -- 7 Energy-related sub-systems 202 -- 7.1 Weather 202 -- 7.1.1 Availability of weather data 201 -- 7.1.2 Weather collection classification 203 -- 7.1.3 Climate severity assessment 205 -- 7.2 Geometrical considerations 212 -- 7.3 Shading and insolation 214 -- 7.3.1 Insolation transformation equations 215 -- 7.3.2 The complete translation, rotation and projection equations 218 -- 7.3.3 An insolation algorithm 221 -- 7.4 Shortwave radiation processes 221 -- 7.4.1 Solar position 223 -- 7.4.2 Solar radiation prediction 224 -- 7.4.3 Inclined surface irradiance 226 -- 7.4.4 Reflection, absorption and transmission within transparent media 229 -- 7.4.5 Intra-zone shortwave distribution 234 -- 7.5 Longwave radiation processes 236 -- 7.5.1 Exchange between internal surfaces 237 -- 7.5.2 View factor determination 244 -- 7.5.3 Linearised longwave radiation coefficients 254 -- 7.5.4 Exchange between external surfaces 254 -- 7.6 Surface convection 256 -- 7.6.1 Natural convection at internal surfaces 256 -- 7.6.2 Forced convection at internal and external surfaces 258 -- 7.7 Casual heat sources 262 -- 7.8 Daylight prediction 262 -- 7.8.1 Sky luminance distribution 263 -- 7.8.2 Internal illuminance distribution: analytical method 263 -- 7.8.3 Internal illuminance distribution: numerical method 269 -- 7.8.4 Photocell response 270 -- 7.9 Mould growth 273 -- 8 Use in practice 281 -- 8.1 Validation 282 -- 8.2 User interface 283 -- 8.3 Performance assessment method 285 -- 8.4 Uncertainty 298 -- 8.5 Large scale considerations 300 -- 8.6 Support mechanisms 301 -- 8.7 Example applications 303 -- 9 Future trends 308 -- 9.1 Design process integration 308 -- 9.1.1 Integrated product models 309 -- 9.1.2 Intelligent interfaces 310 -- 9.2 Virtual construction 316 -- Appendix A Thermophysical properties 325 -- Appendix B Deficiencies of simplified methods 340 -- Appendix C Fourier heat equation and construction time constant 342 -- Appendix D Admittance method: worked example 345 -- Appendix E Point containment algorithm 348 -- Appendix F Radiosity based lighting simulation 349 -- Appendix G The ESP-r system 355.
Summary: An explanation of the theory and practice of modelling energy in buildings, updated to reflect developments in computer-based appraisal tools, this book now includes material on combined thermal/lighting and CFD simulation and advanced glazings.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Books Books SNU LIBRARY
696.011 CLA (Browse shelf(Opens below)) Checked out to SILAMBARASAN CHITHIRAVEL (1810120091) 31/08/2022 00:00 27323
Total holds: 0

1.1 A brief history of simulation 3 --
1.2 Simulation overview 5 --
1.3 Integrative modelling 7 --
1.4 Energy flowpaths and causal effects 7 --
1.5 The need for accuracy and flexibility 18 --
1.6 Energy modelling techniques 19 --
2 Integrative modelling methods 22 --
2.1 Response function methods 22 --
2.2 Time-domain response functions 25 --
2.2.1 Multi-layered constructions 28 --
2.2.2 Zone energy balance 32 --
2.2.3 Response function application 39 --
2.3 Frequency domain response functions 40 --
2.3.1 Multi-layered constructions 41 --
2.3.2 Zone energy balance 46 --
2.3.3 Response function application 46 --
2.4 Numerical methods 51 --
2.4.1 Taylor series expansion 52 --
2.4.2 Control volume heat balance 56 --
2.4.3 Numerical solution techniques 57 --
2.5 Which method? 60 --
3 Building simulation 64 --
3.1 System discretisation 65 --
3.2 Finite volume energy equation formulation 69 --
3.2.1 Capacity/insulation systems 71 --
3.2.2 Exposed surface layers 82 --
3.2.3 Fluid volumes 86 --
3.3 Equation structuring 91 --
4 Processing the building energy equations 99 --
4.1 Establishing the energy matrix equation 100 --
4.1.1 Single zone formulation 100 --
4.1.2 Zone contents and plant interaction 108 --
4.1.3 Multi-zone systems 110 --
4.1.4 Treatment of time-dependent properties 112 --
4.1.5 Adiabatic boundaries 113 --
4.2 Matrix partitioning for fast simultaneous solution 113 --
4.2.1 Single zone solution 115 --
4.2.2 Multi-zone solution 123 --
4.2.3 Solution on the basis of complex criteria 123 --
4.2.4 Treatment of non-linear systems 124 --
4.3 Mixed frequency inversion 125 --
5 Fluid flow 126 --
5.1 The nodal network method 127 --
5.1.1 Boundary conditions 128 --
5.1.2 Node definition 130 --
5.1.3 Buoyancy effects 130 --
5.1.4 Component flow models 131 --
5.1.5 Iterative solution procedure 135 --
5.2 Computational fluid dynamics 137 --
5.2.1 Domain discretisation 138 --
5.2.2 Conserving energy, mass, momentum and species concentration 140 --
5.2.3 Initial and boundary conditions 143 --
5.2.4 Iterative solution procedure 144 --
5.2.5 Results interpretation 144 --
5.3 Moisture flow within porous media 146 --
5.4 Linking the building and flow domains 148 --
6 HVAC, renewable energy conversion and control systems 157 --
6.1 Approaches to systems simulation 158 --
6.2 HVAC systems 159 --
6.2.1 Air conditioning 159 --
6.2.1.1 Component process models: algorithmic 167 --
6.2.1.2 Component process models: numerical 168 --
6.2.1.3 Modelling by 'primitive parts' 169 --
6.2.2 Active solar 173 --
6.2.3 Wet central heating 178 --
6.3 New and renewable energy conversion systems 185 --
6.3.1 Electrical power flow 187 --
6.3.2 Electrical component models 189 --
6.4 Control systems 193 --
6.5 Linking the building, flow and systems models 196 --
7 Energy-related sub-systems 202 --
7.1 Weather 202 --
7.1.1 Availability of weather data 201 --
7.1.2 Weather collection classification 203 --
7.1.3 Climate severity assessment 205 --
7.2 Geometrical considerations 212 --
7.3 Shading and insolation 214 --
7.3.1 Insolation transformation equations 215 --
7.3.2 The complete translation, rotation and projection equations 218 --
7.3.3 An insolation algorithm 221 --
7.4 Shortwave radiation processes 221 --
7.4.1 Solar position 223 --
7.4.2 Solar radiation prediction 224 --
7.4.3 Inclined surface irradiance 226 --
7.4.4 Reflection, absorption and transmission within transparent media 229 --
7.4.5 Intra-zone shortwave distribution 234 --
7.5 Longwave radiation processes 236 --
7.5.1 Exchange between internal surfaces 237 --
7.5.2 View factor determination 244 --
7.5.3 Linearised longwave radiation coefficients 254 --
7.5.4 Exchange between external surfaces 254 --
7.6 Surface convection 256 --
7.6.1 Natural convection at internal surfaces 256 --
7.6.2 Forced convection at internal and external surfaces 258 --
7.7 Casual heat sources 262 --
7.8 Daylight prediction 262 --
7.8.1 Sky luminance distribution 263 --
7.8.2 Internal illuminance distribution: analytical method 263 --
7.8.3 Internal illuminance distribution: numerical method 269 --
7.8.4 Photocell response 270 --
7.9 Mould growth 273 --
8 Use in practice 281 --
8.1 Validation 282 --
8.2 User interface 283 --
8.3 Performance assessment method 285 --
8.4 Uncertainty 298 --
8.5 Large scale considerations 300 --
8.6 Support mechanisms 301 --
8.7 Example applications 303 --
9 Future trends 308 --
9.1 Design process integration 308 --
9.1.1 Integrated product models 309 --
9.1.2 Intelligent interfaces 310 --
9.2 Virtual construction 316 --
Appendix A Thermophysical properties 325 --
Appendix B Deficiencies of simplified methods 340 --
Appendix C Fourier heat equation and construction time constant 342 --
Appendix D Admittance method: worked example 345 --
Appendix E Point containment algorithm 348 --
Appendix F Radiosity based lighting simulation 349 --
Appendix G The ESP-r system 355.

An explanation of the theory and practice of modelling energy in buildings, updated to reflect developments in computer-based appraisal tools, this book now includes material on combined thermal/lighting and CFD simulation and advanced glazings.

There are no comments on this title.

to post a comment.

© Copyright Shiv Nadar University 2012. All Rights Reserved.  Disclaimer |  Sitemap
The Shiv Nadar University has been established under U.P. Act No 12 of 2011. Shiv Nadar University is UGC Approved.